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A NOTE ON LAMBERT'S THEOREM
This note combines all the various cases of Lambert's Theorem into a
single form which is particularly convenient for numerical work. This is made
possible by appropriate choice of parameter and independent variable.
Suppose a particle in a gravitational central force field has distances r,
and r, at times t, and t, from the center of attraction. Let c be the distance

and ¢ the central angle between the positions of the particle at the two times.
Define

s = (r1+r2+c)/2
XK = 1-c¢/s

q = iK%

The sign of q is taken care of by the angle 6 if we make use of

2

= 2 4 2 _ i
c r, r, 2rlr2 cos 6

to derive

q = [(rlrz)“/s] cos (6/2).

We further define

G = universal gravitational constant
M = mass of attracting body

u = GM

a = semimajor axis of transfer orbit
E = -s/2a for elliptic transfer

= s/2a for hyperbolic transfer

(8#/5)‘4 (t2 - tl)/s

-
i



m = number of complete circuits during transfer time.

Note that - 1< q< 1, 0 < E <® for hyperbolic transfer, -1 < E < 0 for

elliptic transfer, and E = 0 for parabolic transfer.

and 7 < 6 <27if -1 < q <0,

Lambert's Theorem!

for elliptic transfer gives

Also 0< ¢ <7 if 0 < q<1

T = (-E)'%2 [2n7 + o - B~ (sina - sin B)] 1)
E = - sin?(a/2), 0<a<27
sin(8/2) = q sinla/2), —7<B<7

For hyperbolic transfer,

T = - (E)32 [y -¢§ - (sinh ¥ - sinh §)] (2)
E = sinh? (y/2)

|

|
sinh (§/2) = q E!/2

If E is chosen?

»
i

cos (a/2), —1<x<1,

cosh (y/2), x > 1,

For both elliptic and hyperbolic transfer

as the independent variable, « is ambiguous. We avoid any
ambiguity by choosing as the independent variable




For the elliptic case let

y = sin (a/2) = (-E)*

z = cos (B5/2) = (1 + KE)*

f = sin (%) la-B) = y(z - qx)
g = cos (%) la-B) = xz - qE

0<a-8<27 since 0< f<1

h = (%) (sina - sin 8) = y(x - qz)
A = arctan (f/g), 0 < A <7

It then follows for the elliptic case that

T = 2(m7m+ A - h)/y3 (3)

For the hyperbolic case let

y = sinh (y/2) = E¥

z = cosh (8/2) = (1 + KE)*

f = sinh (%) (y - 8) = y(z - gx)
g = cosh (%) {y - 8) = xz-qE

0<y-8<o© since 0 < f <o

h = (%) (sinh ¥ - sinh 8) = y(x - qz)

"

%) {y - 8) arctanh (f/g) '
= (%) Inl(f + g)/lg - £)]

= o) In [(£ + 6)2/(e? - £7)]

= In(f + g)




Thus for the hyperbolic case

T = 2[h - Inl(f + g)l/yd (4)
When m = 0, equations (1), (2), (3) and (4) break down for x = 1 and suffer

from a critical loss of significant digits in the neighborhood of x = 1. To
remedy this (1) is written

T = ¢(-E) - qK¢(-KE), 5
$(u) = 2[arcsin u”% - u* (1 - u)%]/u3/2.
Replacing arcsin u* and (1 - u)* by series?,

¢(u) = 4/3+ Y a ut, ful <],

n=1
a = 1-3-5---(2n—1)/2"“2(2n+3)n!

A similar procedure produces the same series for the hyperbolic case. In
fact (5) holds for the elliptic (m = 0), parabolic, and hyperbolic cases provided

0 < x < 2.

It is now apparent that, given q and x , the following steps produce T for
all cases:

1 K = q2
2 E = x%2 -1
3. p = |E|

4. If p is near 0 , compute T from (5).

5. y = /O‘/é
6. z = (1 + KE)*
7. £ = y(z - gx)




8. g = xz - qE

9. IfE<O0, A = arctan (f/g), d = mm+ A, 0O<A<7
If E>0, d = In(f + g)

10. T = 2(x - qz — d/y)/E

The following formula for the derivative holds for all cases except for
x = Owith K = 1 andfor x = 1.

dT/d%x = (4 - 4qKx/z - 3xT)/E

If x is near 1, the series representation should be differentiated. I q = 1
we have a left-hand derivative of -8 and a right-hand derivative of 0 at x = 0.
- If 9 = -1 we have a left-hand derivative of 0 and a right-hand derivative of -8
at x = 0. (See Figure 1.)

In the derivation of Lambert's Theorem for the elliptic case o and 8 are
defined in such a way that

E,-E = a-f+2n7 (5)

where E, and E, are the values of the eccentric anomaly at times t " and t -
Thus from equation (1)

E, - E, = (-E)¥T + sina - sin

il

y3T + 2y(x - qz). (6)
We now obtain a formula for the scalar product
S, T ory tvy T oryv,osiny,

of the position and velocity vectors at time t, v,y and ¢, being the speed and
flight path angle.



Kepler's equation can be written*
(u/a3)% (t2 - tl) = E, ~E, * 8, [l - cos(E2 - El)]/(pa)%

-(1 - r,/a) sin(E, - E,).

Substituting a = - s/2E, t, —t, = s¥2T/(8u)* , and making use of (5) and
(6) we have, after some algebra,

S, ~© (2,us)% [qz(s - rl) - x(s - rz)j]/c

A similar procedure produces the same formula for S, in the hyperbolic
case. It also holds for the parabolic case.

Figures 1 and 2 show T as a function of x for elliptic and hyperbolic
transfer, the parabolic case occurring for x = 1. We suggest the reader com-~
pare these curves with those in Reference 2 showing T as a double-valued
function of E with infinite slope at E = -1.

No solutions of Lambert's equation exist in the shaded regions of figures 1
and 2, x =1 (m > 0) and x = -1 are vertical asymptotes. T ~ 0 as x - «,
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